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Conditions determining the existence of localized steadily translating two-layer
vortices (modons) of arbitrary symmetric form on the β-plane are considered. A
numerical method for direct construction of modon solutions is suggested and its
accuracy is analysed in relation to the parameters of the computational procedure and
the geometrical and physical parameters of the modon sought. Using this method,
several non-circular baroclinic solutions are constructed marked by nonlinearity of
the dependence of the potential vorticity (PV) on the streamfunction in the trapped-
fluid area of the modon, i.e. where the streamlines are closed. The linearity of this
dependence and the circularity of the trapped-fluid area are shown to be equivalent
properties of a modon. Special attention is given to elliptical modons – extended
both in the direction of the modon propagation and in the orthogonal direction, the
baroclinic PV component being assumed continuous. The differences between the two
types of elliptical modons are discussed. The simplest vortical couples and shielded
modons are considered. In the context of the continuity of the baroclinic PV field,
the stability of modons is discussed based on numerical simulations.

1. Introduction
Modons arise from Lamb’s (1895, 1906) solution of the two-dimensional Euler

equations (it is also valid for the f -plane). (In a historical essay, Meleshko &
van Heijst (1994) noted that Chaplygin (1903) independently suggested the same
solution.) On the barotropic β-plane, Stern (1975) and Larichev & Reznik (1976)
constructed a standing and a travelling modon solution, respectively. In all these
solutions the modon is a dipole (or, more generally, an antisymmetric structure); its
trapped-fluid area – the interior domain, in which the streamlines considered in the
travelling frame are closed – is circular. Within and outside the circular separatix
demarcating the two domains, two different linear relationships between potential
vorticity (PV) and the streamfunction Ψ = ψ + Uy hold, where ψ and Ψ designate
the streamfunctions in the absolute and travelling coordinate frames, respectively, U

the modon translation speed, and y the northward coordinate (x denotes the zonal
coordinate).

The two-layer modons of Flierl et al. (1980) and the modon solutions that can be
fitted to any continuous stratification (Kizner 1984, 1997) inherit these characteristics:
the boundary of the region of closed streamlines is a circle (circular cylinder), and
the PV vs. Ψ dependence in each layer (or at any level) is piecewise-linear. Similarly,
three-dimensional spherical modons in a continuously (and linearly) stratified fluid
are marked by linearity of the PV vs. Ψ relation (Berestov 1979; Kizner 1988).
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The existence of nonlinear (in the above sense) modons was first reported by
McWilliams & Zabusky (1982): in one of their numerical experiments, two merging
Larichev–Reznik dipoles created a quasi-stationary vortex with a nonlinear interior
relationship. Hesthaven et al. (1995) obtained a quasi-stationary dipolar nonlinear
modon as an ultimate state of the evolution of some other nonlinear vortex solution
of the two-dimensional Euler equations. In the both cases the form of the trapped-fluid
domain of the modon was not analysed. Using asymptotic techniques Nycander (1988)
suggested dipolar and quasi-monopolar nonlinear modon solutions with separatrices
different from circles. The emergence of nonlinear barotropic dipoles from different
initial conditions (including linear modons) was also observed in both numerical and
laboratory experiments in the presence of viscosity (Nielsen & Juul Rasmussen 1997;
van Geffen & van Heijst 1998). On the other hand, there is some evidence that with
weak viscosity barotropic modons on the β-plane may keep their linearity for times
exceeding the characteristic time scale (defined as the ratio of the modon radius
and translation speed) even if initiated as f -plane modons (Sutyrin et al. 1994) or
if resulting from the collapse of strongly unstable linear shielded β-plane modons
(Kizner & Berson 2000).

An important step in the study of ‘nonlinear’ modons was made by Boyd &
Ma (1990), who extended Lamb’s theory by constructing numerically a stationary
elliptical dipole. They considered only the ellipses extended in the direction of the
modon propagation and revealed the specific nonlinear dependence between vorticity
and Ψ characteristic of the interior domains of such ellipses.

Morel & McWilliams (1997) observed the emergence of nonlinear vortical structures
in a baroclinic quasi-geostrophic (QG) model with high vertical resolution. In our
recent two-layer numerical experiments (β-plane, equal-depth layers), at a certain
stage of evolution circular modons sometimes switch to an oval (nearly elliptical)
state, whose characteristic properties are nonlinearity of the interior PV vs. Ψ rela-
tionship and a saddle-like topography of the baroclinic mode (Kizner, Berson &
Khvoles 2002, referred to below as KBK). Such modons have much in common
with hetons (Hogg & Stommel 1985; Gryanik 1983, 1988) because their translation
mechanism is due to oppositely signed vortices occurring in different layers and
separated by a certain distance in the y-direction. They appear to represent a quite
general type of baroclinic QG equilibrium and, therefore, merit detailed analysis.

The main objective of the present paper is the development of a method for the
direct numerical construction of stationary non-circular β-plane baroclinic modon
solutions with nonlinear interior relationships between PV and Ψ . As noted by Boyd
& Ma (1990), “The shape of the modon and relationship between the vorticity and the
streamfunction are two factors which can be used to determine the modon solution,
and only one of them is independent”. Based on this principle we focus our efforts
on the construction of two-layer modons on the β-plane specifying the form of the
separatrix, while the PV vs. Ψ dependence is determined a posteriori. (Verkley 1993
constructed numerically ‘nonlinear’ barotropic solutions on a sphere using, in essence,
the opposite approach.) In order to minimize the number of free parameters of the
problem, we impose some symmetry restrictions on the solutions sought. In particular,
only figures symmetrical about the x- and y-axes are considered. While the barotropic
PV component is continuous everywhere in the (x, y)-plane, a jump discontinuity of
the baroclinic PV on the separatrix is permitted (non-smooth modons), and the
amplitude of the external baroclinic field can be specified arbitrarily. In principle,
this amplitude, the modon translation speed and the size can be fitted so as to allow
continuity of the baroclinic PV field (smooth modons).
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In § 2, the mathematical formulation is considered in detail. A numerical method
for solving the problem is described in § 3. Some results of its application (including
accuracy estimates) are presented in § 4, where the focus is on smooth elliptical
modons. The stability properties of the smooth and non-smooth modons are discussed
in § 5 based on numerical simulations.

2. Mathematical formulation
2.1. Governing equations

Consider a two-layer QG model in which the unperturbed layer depths are equal
and the bottom is flat (horizontal). We are interested in localized vortices that travel
steadily in the zonal direction at a constant speed U without changing either their
form or other characteristics. Such a vortex, when considered in a coordinate frame
attached to the vortex centre, is stationary. In this frame the governing equations –
the equations of PV conservation – are as follows:

J (Ψ1, q1) = 0, J (Ψ2, q2) = 0, (1)

where

Ψ1 = ψ1 + Uy, Ψ2 = ψ2 + Uy, (2)

q1 = �ψ1 + Λ2(ψ2 − ψ1) + βy, q2 = �ψ2 + Λ2(ψ1 − ψ2) + βy. (3)

In equations (1)–(3) subscripts 1 and 2 are indices of the upper and lower layers,
respectively; q1 and q2 are the PV in the layers; Λ2 = f 2

0 ρ0/(ghδρ) = 2/L2
Ro, where

LRo =
√

gδρH/(ρ0f
2
0 ) is the internal Rossby radius, H = 2h is the total depth of the

fluid (h is the unperturbed layer depth), g is the acceleration due to gravity, ρ0 and
δρ are the mean density and the density jump between the layers; and f0 and β

are, respectively, the reference value of the Coriolis parameter f and the northward
gradient of f (see, for example, Kamenkovich, Koshlyakov & Monin 1986, Ch. 2).

It is well-known that equations (1) imply the existence of some dependences between
q1 and Ψ1, on the one hand, and q2 and Ψ2, on the other:

q1 =F1(Ψ1), q2 = F2(Ψ2). (4)

Moreover, in the exterior domain – on the open isolines of the streamfunctions Ψ1

and Ψ2 – these dependences are simple proportions (Flierl et al. 1980):

q1 = l2Ψ1, q2 = l2Ψ2, l2 =
β

U
. (5)

Finally, it is known (Larichev & Reznik 1976; Flierl et al. 1980) that a localized
solution to equations (1)–(3) can exist only if U � 0. Below we shall see that, in
the interior domain, i.e. within the trapped-fluid area, the functions F1 and F2 are
determined by the shape of this area along with the translation speed and another
independent parameter – the exterior baroclinic mode amplitude.

To give an exact formulation of the problem it is appropriate to rewrite the
above model in terms of the barotropic (BT) and baroclinic (BC) modes that, in the
equal-depth case, are defined as follows:

ψBT = 1
2
(ψ1 + ψ2), ψBC = 1

2
(ψ1 − ψ2), (6)

ΨBT = 1
2
(Ψ1 + Ψ2) = ψBT + Uy, ΨBC = 1

2
(Ψ1 − Ψ2) = ψBC, (7)

qBT = �ΨBT + βy = �ψBT + βy, qBC = �ΨBC − m2ΨBC = �ψBC − m2ψBC, (8)
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where m2 = 2Λ2. The governing equations for the modes then are

J (ΨBT, qBT ) + J (ΨBC, qBC) = 0, (9)

J (ΨBT, qBC) + J (ΨBC, qBT ) = 0. (10)

2.2. Symmetry restrictions

The integral angular momentum of a localized solution to equations (9), (10) is zero
(Flierl, Stern & Whitehead 1983), so that∫ ∫

ψBT dx dy =0,

where the integration is performed over the whole (x, y)-plane. Therefore, vortices
with a dipolar barotropic mode play a distinctive role in geophysical fluid dynamics.
In an equal-depth two-layer QG model, the antisymmetry of the barotropic mode
and symmetry of the baroclinic mode about the x-axis are conserved if they are
present in the initial condition (KBK). Moreover, our experiments on the evolution
of circular modons tilted at 30◦ to the x-axis suggest that, when asymmetrically
perturbed, modons in such a model tend to stabilize in the states in which the
asymmetric components in ΨBT and ΨBC are negligible (KBK). This explains our
particular interest in searching here for the solutions to equations (9), (10) categorized
by antisymmetry about the x-axis and symmetry about the y-axis of the barotropic
mode, and the symmetry of the baroclinic mode about both the x- and y-axes.

Thus we assume that

ΨBT(x, −y) = −ΨBT(x, y), ΨBT(−x, y) = ΨBT(x, y), (11)

ΨBC(−x, y) = ΨBC(x, −y) =ΨBC(−x, −y) = ΨBC(x, y). (12)

Clearly, in this case, the functions ψ1 and ψ2, as well as Ψ1 and Ψ2, are mutually
antisymmetric:

ψ1(x, −y) = −ψ2(x, y), Ψ1(x, −y) = −Ψ2(x, y). (13)

We shall assume for simplicity that in both layers, a common separatrix Γ

demarcates the exterior region, where the proportions (5) hold, and the interior
domain, where the relationships (4) differ from (5). It readily follows from (13) that
Γ must be symmetric about both the x- and y-axes. In addition, we shall regard
the periodic function r = rΓ (θ) determining the closed contour Γ to be smooth and
single-valued. The solutions presented below in § 4 correspond to the particular case
of smooth convex contours Γ that deviate moderately from a circle.

Consider two symmetrical points (x0, y0) and (x0, −y0) on the contour Γ . Since Γ

is a streamline (in the travelling coordinate frame), i.e. Ψ1|Γ = const, we have

Ψ1(x0, y0) = Ψ1(x0, −y0).

Due to (11), (12), this is possible only if

ΨBT(x0, y0) = ΨBT(x0, −y0) = 0.

In other words, at the contour Γ the following equalities hold:

ΨBT|Γ = 0, ΨBC|Γ = const. (14)
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2.3. Exterior problem

The equations that determine the barotropic and baroclinic modes in the exterior
region, r > rΓ (θ), follow from (5) and (8); these are Helmholtz equations:

�ψ
(Ex)
BT − l2ψ

(Ex)
BT = 0, �ψ

(Ex)
BC − (l2 + m2)ψ (Ex)

BC = 0, (15)

where superscript (Ex) is used to distinguish the exterior solution from the interior
one. The boundary conditions that complete the formulation of the exterior problem
follow from (14) and the fact that the solution we are looking for is localized:

(
ψ

(Ex)
BT + Uy

)∣∣
Γ

=0, ψ
(Ex)
BC

∣∣
Γ

= C, (16)

ψ
(Ex)
BT → 0, ψ

(Ex)
BC → 0 as r → ∞. (17)

Hereinafter the translation speed U > 0 is assumed to be fixed; C is an arbitrary
constant unless otherwise specified; r =

√
x2 + y2 and θ are polar coordinates;

conditions (17) should be read so that the functions ψ
(Ex)
BT and ψ

(Ex)
BC go to zero

exponentially.
We represent a solution to equations (15) that satisfies conditions (17) and the

above symmetry/antisymmetry restrictions in the following form (Flierl et al. 1980):

ψ
(Ex)
BT =

∞∑
i=0

A2i+1K2i+1(lr) sin[(2i + 1)θ], (18)

ψ
(Ex)
BC =

∞∑
i=0

B2iK2i(r
√

l2 + m2) cos(2iθ), (19)

where Kν is the ν-order modified Bessel (Macdonald) function. The natural domain
of convergence of the Fourier–Bessel series (18), (19) is the exterior of a circle, while
for a non-circular separatrix, the domain of convergence needs to be the circle of
smallest radius that touches any part of Γ . The latter is not guaranteed for an
arbitrary contour (Boyd 2002), but can be expected to hold when Γ is smooth and
convex to such a degree that it deviates moderately from a circle. In any case, once
the exterior solution is based on the expansions (18), (19), it should be a posteriori
checked for regularity in the domain bounded by Γ and the smallest circle enclosing
Γ . All the solutions presented in §§ 4 and 5 were tested and proved to be regular
(see §§ 3.1 and 4.3). In § 3.3, a more general, rigorous approach free of the above
restraint is presented that can also be extended to constructing modons with different
separatrices in the upper and lower layers.

Given the contour Γ and constant C, the coefficients A2i+1 and B2i(i � 0) are
completely determined via conditions (16), where the variable y is replaced with
r sin θ . The uniqueness of this determination follows from the fact that the exterior
Dirichlet problem (16), (17) for the Helmholtz equations (15) is always solvable,
yielding a unique solution (Koshliakov, Gliner & Smirnov 1962, Ch. 25), and that, at
any fixed r , the Fourier decompositions (18) and (19) are also unique.

If, for example, Γ is a circle of a radius a, one obtains

A1 = − aU

K1(la)
, B0 =

C

K0(a
√

l2 + m2)
, (20)

A2i+1 = B2i = 0 for i > 0. (21)
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Hence we can conclude that, in circular modons, the external barotropic field
necessarily contains only one azimuthal harmonic

ψ
(Ex)
BT =

aU

K1(la)
K1(lr) sin θ, (22)

whereas the baroclinic mode can only be radially symmetric:

ψ
(Ex)
BC =

C

K0(a
√

l2 + m2)
K0(r

√
l2 + m2) (23)

(cf. Flierl et al. 1980; and Reznik & Sutyrin 2001, where these restrictions were
postulated).

If Γ is non-circular the exterior barotropic mode may, generally, comprise all the
odd azimuthal harmonics (sin[(2i + 1)θ], i � 0), and the baroclinic mode all the even
harmonics (cos(2iθ), i � 0). For example, this is the case when Γ is an ellipse. We
emphasize that, as seen from (16), (19), once U and Γ are given, the baroclinic mode
of the exterior solution is determined only to an arbitrary factor C.

2.4. Interior problem

In this subsection, contour Γ is assumed to be fixed. To set up the interior problem (at
r < rΓ (θ)), we supplement equations (9), (10) with the following boundary conditions:

ΨBT|Γ = 0, ΨBC|Γ =C, (24)

∂

∂n
ΨBT|Γ =

∂

∂n
Ψ

(Ex)
BT

∣∣
Γ
,

∂

∂n
ΨBC|Γ =

∂

∂n
Ψ

(Ex)
BC

∣∣
Γ
, (25)

where the differentiation is carried out in the direction of the (external) normal n
to the contour Γ . Conditions (24), (25) require the continuity of the streamfunction
(pressure) and velocity fields at the separatrix. An analogy with the classical linear
problems of mathematical physics suggests that these conditions are sufficient for the
correctness of the interior problem once we confine ourselves to regular solutions.
This is supported by the results presented in § 4 and discussed in the Conclusion.

Let us now clear up the question of the continuity of the barotropic and baroclinic
PV fields at the separatrix Γ . Based on (4) and (5), in a manner similar to that in which
relationships (14) were obtained, we arrive at the conclusion that qBT|Γ = q

(Ex)
BT |Γ =0.

Thus, the barotropic PV component in the solution of the problem (9), (10), (24), (25)
is continuous. The same cannot be said of the baroclinic PV mode: generally, there is
a jump in qBC values across the contour Γ . However, both the exterior and interior
baroclinic PV assume constant values at Γ :

q
(Ex)
BC

∣∣
Γ

= l2C, qBC|Γ = F1(ΨBC|Γ ) = F1(C).

Formally, solutions with a jump in qBC at Γ , i.e. those in which F1(C) �= l2C, are
legitimate as Γ is both a streamline and a material contour (pathway of fluid
particles), and hence equations (9), (10) are satisfied at Γ .

The presence of one degree of freedom in the problem (9), (10), (24), (25), that
is, of an arbitrary constant C, allows us to pose the question of the existence of
high-smoothness solutions, i.e. those in which qBC is continuous at Γ . To provide the
continuity of the baroclinic PV field, parameter C must obey the equation

F1(C) − l2C = 0. (26)

In this case C must be a function of U . There are grounds to believe that, on the
β-plane, solutions marked by a discontinuity of the baroclinic PV are unstable,
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whereas stable configurations are smooth (see § 5). Therefore, below in § 4 we present
such solutions that satisfy condition (26), referring to them as smooth ones.

3. Numerical method
In the general case, solving the interior problem analytically is hardly possible

due to its essential nonlinearity. A method will be presented here that allows
the construction of numerical solutions at quite a high accuracy for symmetric
contours Γ .

3.1. Exterior problem

In order to evaluate the exterior solution we truncate the series (18), (19), i.e. fix some
integer N � 0 and put

A2i+1 =B2i =0 for i > N. (27)

In most practical computations N was taken equal to 11, i.e. 24 azimuthal harmonics
were left (12 odd and 12 even).

Next, we choose P >N +1 points (rΓ,j , θj ) distributed along Γ in the first quadrant
(0 < θ � π/2) and, at every pair (rΓ,j , θj ), substitute expansions (18), (19), (27) in (16).
This yields

N∑
i=0

A2i+1K2i+1(lrj ) sin[(2i + 1)θj ] = −UrΓ,j sin θj , (28)

N∑
i=0

B2iK2i(
√

l2 + m2rj ) cos(2iθj ) = C, (29)

where j = 1, . . . , P is the point index.
Relationships (28), (29) represent two independent linear systems in A2i+1 and B2i .

The number of equations in each of these systems, P , exceeds that of the unknowns,
N + 1. If P is sufficiently large (compared to N + 1), then non-zero (N + 1) × (N + 1)
minors can be found in each of the matrices of systems (28) and (29), which guarantees
the uniqueness (and reliability) of the solution to (28) and (29) in the least squares
(LSQ) sense. Another advantage of solving an over-determined problem is a guarantee
that the exterior field based on truncated series will provide a good approximation to
conditions (16) everywhere along Γ . In calculations for elliptical figures (most of the
results presented below) P was taken to be 300.

The possibility of representing the exterior solution in the form (18), (19) can be
validated by testing the ability of these series to satisfy conditions (16). Clearly, the
stronger the deviation of the contour Γ from a circle, the more harmonics must be
taken to represent the exterior solution. On the other hand, one could anticipate
that, as the boundary becomes more and more different from a circle, the numerical
determination of the coefficients A2i+1 and B2i in (28), (29) might eventually become
ill-conditioned (due to the problem of the domain of convergence discussed in § 2.3)
resulting in the error in fulfillment of (16) not continuing to decrease monotonically
with increasing N . According to our tests, when dealing with elliptical modons and
moderate translation speeds (U ∼ 0.1 to 1.5), the series representation (18), (19) of
the exterior field (outside Γ ) is valid at least for ellipses with aspect ratios up to 2:1,
in which case 50 azimuthal harmonics (N = 24) were used. We note that this specific
limitation was conditioned by the limited precision in computing the modified Bessel
functions provided by the software used.
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3.2. Interior problem

3.2.1. Successive linearization scheme

To solve the interior problem we adopt the successive linearization procedure –
a version of the Newton–Kantorovich method (Kantorovich 1948). The iteration
process underlying this approach is as follows:

Let IT be the iteration index (IT = 0, 1, . . .). Once the ITth approximation, Ψ
(IT )
BT ,

Ψ
(IT )
BC , is known, the next, (IT + 1)th approximation is given by

Ψ
(IT+1)
BT = Ψ

(IT )
BT + δBT, Ψ

(IT+1)
BC = Ψ

(IT )
BC + δBC, (30)

q
(IT+1)
BT = q

(IT )
BT + �δBT, q

(IT+1)
BC = q

(IT )
BC + �δBC − m2δBC, (31)

where the corrections δBT and δBC satisfy the third-order linear differential equations

J
(
δBT, q

(IT )
BT

)
+ J

(
Ψ

(IT )
BT , �δBT

)
+ J

(
δBC, q

(IT )
BC

)
+ J

(
Ψ

(IT )
BC , �δBC − m2δBC

)
= −J

(
Ψ

(IT )
BT , q

(IT )
BT

)
− J

(
Ψ

(IT )
BC , q

(IT )
BC

)
, (32)

J
(
δBT, q

(IT )
BC

)
+ J

(
Ψ

(IT )
BT , �δBC − m2δBC

)
+ J

(
δBC, q

(IT )
BT

)
+ J

(
Ψ

(IT )
BC , �δBT

)
= −J

(
Ψ

(IT )
BT , q

(IT )
BC

)
− J

(
Ψ

(IT )
BC , q

(IT )
BT

)
. (33)

These equations are supplemented by the following boundary conditions:

δBT|Γ = −Ψ
(IT )
BT

∣∣
Γ
,

∂

∂n
δBT|Γ =

∂

∂n
Ψ

(Ex)
BT

∣∣
Γ

− ∂

∂n
Ψ

(IT )
BT

∣∣
Γ
, (34)

δBC|Γ =C − Ψ
(IT )
BC

∣∣
Γ
,

∂

∂n
δBC|Γ =

∂

∂n
Ψ

(Ex)
BC

∣∣
Γ

− ∂

∂n
Ψ

(IT )
BC

∣∣
Γ
. (35)

Formally, (30), (31), (34) and (35) imply that, starting from the second iteration, the
current corrections satisfy the conditions

δBT|Γ =
∂

∂n
δBT|Γ = 0, δBC|Γ =

∂

∂n
δBC|Γ = 0.

Nevertheless, because the problem is solved numerically, we use the boundary
conditions for the corrections in the form (34), (35) to provide the maximal available
accuracy.

The iterative procedure (30)–(35) converges to the true solution of the problem (9),
(10), (24), (25) if the initial guess (Ψ (0)

BT and Ψ
(0)
BC) is chosen sufficiently close to this

solution (Kantorovich 1948).

3.2.2. Initial guess

The procedure of constructing the initial guess, Ψ
(0)
BT , Ψ

(0)
BC , consists of several

steps. We start with the construction of a circular modon solution (characterized
by a piecewise linear PV vs. Ψ relationship) taking as its radius the mean radius
r0 = r0(Γ ) =

√
SΓ of the contour Γ (where SΓ is the area bounded by Γ ) and taking

C as the boundary value of ΨBC. As parameters U and r0 are not especially suited
to provide the continuity of qBC at r = r0 (Kizner 1997; KBK), the resulting circular
modon is a general-type ‘modon with a rider’ described by Flierl et al. (1980); its
analogue in the classical two-dimensional fluid dynamics is the ‘non-symmetrical
dipole’ of Chaplygin (1903) reproduced and analysed by Meleshko & van Heijst
(1994). We then stretch or contract the fields ΨBT and ΨBC in the radial directions so
as to fulfil the conditions ΨBT = 0 and ΨBC = C at the contour Γ . Finally, the obtained
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ΨBT field is approximated by a (2N + 1)-degree polynomial in x, y, which is even in x

and odd in y, and the ΨBC field is approximated by a 2N -degree polynomial, which
is odd in both x and y.

When examining the possible PV vs. Ψ relationships for circular modons (see below,
§ 4.1) we experiment with initial guesses different from the exact circular solution.
To set such an initial guess, we use an inverse procedure starting from numerically
determined elliptical (and some other) solutions and adapting them to a circle by
stretching/compressing.

3.2.3. Determining the corrections

At this stage, a collocation method is used. The corrections δBT and δBC are
represented as polynomials of the same degrees as the initial guess:

δBT =
∑

0�p+s�N

α(BT )
p,s x2py2s+1, δBC =

∑
0�p+s�N

α(BC)
p,s x2py2s . (36)

Now that the functions Ψ
(0)
BT , Ψ (0)

BC , δBT and δBC are given in polynomials, all differential
operators appearing in equations and conditions (30)–(35) can be expressed explicitly,
and the problem, which is solved at every iteration, is reduced to the determination
of the coefficients α(BT )

p,s and α(BC)
p,s appearing in (36). Note that the polynomial

approximation ensures regularity of the solution (in the case that the iterative process
converges). For some special types of figures, orthogonal mapping and collocation
methods based on a linear combination of products of Chebyshev polynomials in the
resulting rectangular domain can be used (Boyd 2001).

Symmetry/antisymmetry of the modes allows us to consider only one quarter of
the (x, y)-plane when evaluating the coefficients α(BT )

p,s and α(BC)
p,s . At the first stage of

computations we choose the first quadrant (x � 0, y > 0), coat it with a rectangular
mesh and consider a grid domain Ω bounded by the straight lines x =0, y = 0 and
the contour Γ . We then consider equations (32), (33) at each grid point belonging to
Ω , thus obtaining a system of 2K linear equations in α(BT )

p,s and α(BC)
p,s , where K � N

is the total number of grid points in domain Ω . In a similar way, we obtain another
system of 6P linear equations in α(BT )

p,s and α(BC)
p,s by considering equations (32), (33)

and conditions (34), (35) at each j th point belonging to the contour Γ and used
above to determine the coefficients A2i+1 and B2i in (28), (29). We then have a system
of 2K + 6P equations in (N + 1)(N +2) unknowns and solve it in the LSQ sense,
which is possible because 2K + 6P � (N + 1)(N + 2). To avoid dealing with small or
large numbers, the variables x and y are scaled by r0.

Once the approximate solution based on a regular collocation is found, we change
the grid by making it denser in the vicinity of the poles of the barotropic and baroclinic
PV fields, and rerun the iterative procedure starting it from the approximation found.
It should be noted that taking the number of mesh points (and thus the number of
equations) to be larger than the number of unknowns pursues two goals: it ensures
that the linear system in α(BT )

p,s and α(BC)
p,s is well-determined and provides a good (in the

above LSQ sense) polynomial approximations to the true exact solution everywhere
in Ω by damping the possible ‘high-frequency’ oscillations of the polynomials.

The number of computations increases considerably when a modon solution with
a smooth baroclinic PV is sought, because in this case the procedure described above
is embedded within a loop to determine the constant C satisfying equation (26).

The results presented below in § 4 were obtained using the mesh size h ≈ r0/30, i.e.
for K ≈ 700. The iterative procedure was assumed to be converged when the relative
change in the sum (over all 2K +6P ≈ 3200 equations) of squared residuals became
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smaller than a given tolerance level (usually 10−3 to 10−4). The accuracy of the method
is considered in § 4.3.

3.3. Generalization

When the separatrix Γ deviates strongly from a circle (see § 2.3), the construction
of the exterior solution can be facilitated by introducing an additional circular
contour r =R enclosing the contour Γ . This ‘false’ boundary will be denoted
by ΓR , and the symbols Ψ

(Ex)
BT and Ψ

(Ex)
BC will be allotted to the exterior solution

outside ΓR only. The solution at r � R can always be sought in the series form (18),
(19) since these series converge everywhere on ΓR and outside it. By introducing ΓR

we obtain an intermediate domain bounded by the contours Γ and ΓR (generally, this
domain may break down into a number of simply connected domains). The solution
corresponding to this domain, called intermediate and denoted as ψ

(Im)
BT , ψ

(Im)
BC , satisfies

the equations

�ψ
(Im)
BT − l2ψ

(Im)
BT =0, �ψ

(Im)
BC − (l2 + m2)ψ (Im)

BC = 0, (37)

and obeys the boundary conditions

(
ψ

(Im)
BT + Uy

)∣∣
Γ

= 0, ψ
(Im)
BC

∣∣
Γ

=C (38)

that replace (16). In addition (if a smooth solution outside the contour Γ exists) the
intermediate solution must match smoothly the series solution (18), (19) at the circle
ΓR so as to comply with the following conditions:

Ψ
(Im)
BT

∣∣
ΓR

=Ψ
(Ex)
BT

∣∣
ΓR

, Ψ
(Im)
BC

∣∣
ΓR

= Ψ
(Ex)
BC

∣∣
ΓR

, (39)

∂

∂n
Ψ

(Im)
BT

∣∣∣∣
ΓR

=
∂

∂n
Ψ

(Ex)
BT

∣∣∣∣
ΓR

,
∂

∂n
Ψ

(Im)
BC

∣∣∣∣
ΓR

=
∂

∂n
Ψ

(Ex)
BC

∣∣∣∣
ΓR

. (40)

Finally, as the interior solution borders the intermediate one, conditions (25) must be
replaced with the following:

∂

∂n
ΨBT|Γ =

∂

∂n
Ψ

(Im)
BT

∣∣
Γ
,

∂

∂n
ΨBC|Γ =

∂

∂n
Ψ

(Im)
BC

∣∣
Γ
. (41)

In (40) and (41), the symbol ∂/∂n designates the derivative in the direction normal
to ΓR and Γ , respectively. It is straightforward to show that conditions (39), (40)
guarantee the smoothness of the functions q (BT ) and q (BC) on ΓR .

Because of the interdependence of the exterior and intermediate solutions, equations
and conditions (18), (19), (37)–(40) must be solved simultaneously within the same
numerical procedure. At this stage, to evaluate the intermediate solution, we again use
the collocation method and polynomial approximation. The resulting two independent
linear systems in the polynomial and Fourier–Bessel coefficients – one for the barotro-
pic mode and the other for the baroclinic mode – are solved in the LSQ sense.

This general scheme is especially appropriate for strongly curved contours. In the
present work, where we focus manly on moderately elliptical modons, it was used
for selective checking of the solutions found with the ‘simple’ technique described in
§§ 3.1 and 3.2. In all cases the results obtained using the two methods were practically
identical.
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4. Applications
4.1. Circularity and linearity

As ascertained above, in a circular modon the barotropic and baroclinic modes of
the exterior solution can contain only one gravest azimuthal harmonic each (see
equations (20)–(23)). The familiar analytical circular solution with a linear interior
PV vs. Ψ dependence in the layers (Flierl et al. 1980) contains the same gravest
azimuthal harmonics in the interior domain and, obviously, obeys conditions (24),
(25). This fact suggests that linearity of the interior PV vs. Ψ dependence is intrinsic
in circular solutions only. This statement was verified by computations and proved
to be correct (figures 1–3).

To verify that, in a circular modon, the PV vs. Ψ relation is always linear we
started the iterative procedure from various initial guesses which, in turn, were
obtained using previously computed nonlinear (mostly elliptical) numerical solutions.
Whenever the process converged, the resulting interior solution was linear to an
extremely high accuracy almost independently of N (which varied from 7 to 15)
and the corresponding values of h and P (see § 4.3). This allows us to conclude
that circular baroclinic modons are always ‘linear’. Assuming this as a proven fact,
one must accept that the analytical solution with a continuous baroclinic PV field
is the only possible circular baroclinic modon solution of such smoothness. We note
that, in this particular case, conditions (24)–(26) are satisfied at arbitrary value of C,
i.e. at any strength of the rider. They determine the ‘dispersion relation’ r0 = rC(U )
between the separatrix radius r0 and the translation speed U of a circular modon: at a
smaller or larger radius (for a given U ) the baroclinic PV will necessarily experience a
jump at the separatrix. An example of a smooth circular baroclinic solution obtained
numerically is shown in figure 1; it is identical to the analytical solution, i.e. is
composed of a barotropic Larichev–Reznik dipole and a smooth circularly symmetric
baroclinic ‘rider’; the layer PV vs. Ψ relation in the interior domain is linear in this
modon (figure 3a). Circular modons that do not obey the smoothness condition (26)
are considered in § 5. It should be noted that the interior q1 vs. Ψ1 relations shown
here and below have been plotted as scatter-graphs based on our computations.
They appear as solid lines due to the high resolution and accuracy of the numerical
procedure applied (see also § 4.3).

The truth of the converse statement is confirmed by the experiments with non-
circular figures. Computations show that any non-circularity of the separatrix results
in nonlinearity of the interior solution. Even very small deviations of Γ from a
circle may sometimes lead to considerable deformations of the PV field compared
to the circular solution (figure 2), and the PV vs. Ψ scatter-diagram may become
noticeably distorted (figure 3b). Here and below all the variables are non-dimensional,
the scales being: LRo for the space variables x, y; βL2

Ro for U ; βL3
Ro and βLRo for the

streamfunction and PV, respectively.

4.2. Smooth elliptical modons

An ellipse, symmetrical about the x- and y-axes, is defined by two independent
parameters. In order to comply with the parameterization of the oval modons applied
in KBK, we shall use the aspect ratio ry/rx (or rx/ry) of the ellipse radii in the y- and
x-directions and its mean radius r0 =

√
rxry . Clearly, if ry/rx �=1, three parameters U, r0

and ry/rx completely determine a smooth baroclinic elliptical modon, the parameter C

being a function of these – see equation (26). In our numerical evolution experiments
(two-layer equal-depth model), transitions of circular modons to quasi-elliptical states
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Figure 1. Potential vorticity fields of the smooth circular modon propagating at the speed
U = 0.7 (the corresponding radius is r0 ≈ 1.30; C = 0.675): upper panel – contours of constant
PV; lower panel – cross-sections at x = 0. The interval between the contours is 20% of the
maximum; regions of positive values are shaded; dashed line, separatrix Γ .
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Figure 2. Potential vorticity fields in the smooth modon with a separatrix given by the
equation r = 1.30(1 + 0.005 sin2 2θ ); other parameters and notation (contours, shading, dashed
line) as in figure 1.
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Figure 3. PV vs. Ψ scatter-graph for the upper layer: (a) circular modon shown in figure 1;
(b) non-circular modon shown in figure 2. Solid line, interior domain; dashed line, exterior.
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Figure 4. Regions of different types of modon solutions in the (U, r0)-plane: solid lines,
branches of the dispersion relationship r0 = r0(U ) for the smooth circular modons; dashed
lines, their asymptotes; solid circles A to E, the modons shown in figures 5–11; open circles F,
G, modons whose evolution is shown in figure 13.

with separatrices extended in the y-direction were observed (KBK). Therefore, such
ellipses (ry/rx > 1) will be referred to as ordinary, while those extended in the x-
direction (rx/ry > 1), will be referred to as extraordinary.

As noted above, in the particular case of smooth circular modons (ry/rx = 1), the
radius r0 is a function of the translation speed U . This function is multi-valued (solid
lines in figure 4). The circular solutions corresponding to the lower branch have the
simplest non-shielded structure – dipolar barotropic mode and monopolar baroclinic
‘rider’ (figure 1). The solutions corresponding to the higher branches belong to the
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category of shielded modons: the barotropic mode in such solutions is four-polar.
One might expect that the branches of the relation r0 = rC(U ) separate regions of
different modon types in the (r0U )-plane. This appears to be generally true, with a
correction for the fact that a full classification of elliptical modons can be performed
by analysing the three-dimensional surface determined by the dispersion relation
r0 = r0(U, C, ry/rx) in a four-dimensional parameter space, whereas in the (r0, U )-
plane we are dealing only with a two-dimensional projection of this surface (see also
KBK).

Beneath the lower branch of the relation r0 = rC(U ), only non-shielded ordinary
elliptical solutions were found (e.g. point A in figure 4), while non-shielded extra-
ordinary modons were found only above it, but not too close to the upper branch
(e.g. point B in figure 4). On and above but close to the lower branch, apart from
the extraordinary solutions, ordinary modons are present (e.g. point C in figure 4).
The latter, however, possess some properties that differentiate them from the ordinary
modons belonging to the domain r0 < rC(U ). In figures 5–8, the non-shielded elliptical
modon solutions of different types are shown corresponding to points A–C in figure 4.

The characteristic feature of the ordinary elliptical modons found beneath the lower
branch is the saddle-like shape of the baroclinic component, which can normally be
observed in both the streamfunction and PV fields, but is more pronounced in the
latter (figure 5). The bimodal character of the baroclinic PV distribution results, in
each layer, in one of the baroclinic PV peaks nearly compensating the opposite-sign
barotropic peak. This is apparent in the concentration of the positive and negative
PV in different half-planes (with respect to the x-axis) and different layers (figure 5b).
In other words, such a vortex structure represents essentially a distributed heton.

While the barotropic, baroclinic and layer streamfunction fields of the extraordinary
modon (figure 6a) are roughly similar to those of a circular modon (cf. KBK), its
PV fields exhibit a number of peculiarities (figure 6b). First, the barotropic PV field
has small dents in the regions where the maximal and minimal values are assumed.
Second, the central peak of the baroclinic PV is supplemented by two minor peaks
in the interior domain. Accordingly, the layer PV distribution in the interior appears
as two patches of nearly constant (though somewhat wavy) PV, opposite in sign,
surrounded by rims of strong PV gradients.

The difference between the ordinary and extraordinary elliptical modons is
manifested in specific features of their scatter-diagrams (figure 7). The solid lines
in figures 7(a) and 7(b) that show the interior q1 vs. Ψ1 dependences are, in general,
oppositely curved and, in the extraordinary modon, the graph has a volute on one
of the ends, reflecting the dented character of the PV distribution in the area of its
highest values.

Above the lower branch of the relationship r0 = rC(U ), in the larger ordinary
modons, the internal baroclinic PV field may be single-modal or bimodal, depending
on the modon translation speed and mean radius. Figure 8 represents an example of
such an ordinary elliptical modon at U = 0.5 and r0 = 1.35 with only one extremum
in both the baroclinic streamfunction and PV fields. Correspondingly, the layer PV in
the interior shows up as a single peak on a patch with a more or less homogeneous
distribution (figure 8b). The shape of the interior scatter-graph of this solution is
qualitatively similar to that of the ‘small’ ordinary modons (cf. figures 7a and 8c).

In the vicinity of the second branch of the relation r0 = rC(U ) these are shielded
elliptical modons, but here ordinary modons are observed above this branch and
extraordinary modons below it (points D, E in figure 4). The corresponding solutions
are shown in figures 9–11. They look qualitatively similar to each other in terms of
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Figure 5. The ordinary elliptical modon given by the parameters U = 1, r0 = 1, ry/rx = 1.1
and labelled A in figure 4: (a) streamfunction fields (ψ); (b) PV fields. Notation as in figure 1.
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Figure 7. PV vs. Ψ scatter-graph for the upper layer: (a) ordinary elliptical modon shown in
figure 5; (b) extraordinary elliptical modon shown in figure 6. Notation as in figure 3.

both streamfunction and PV. In particular, the layer PV field is a relatively small
patch of one sign surrounded by a thick ring, in which the PV is smaller in absolute
value and opposite in sign (figures 9b and 10b). A remarkable new property of a
shielded elliptical modon is the ramification of the interior scatter-graph (figure 11).
This is due to the fact that the interior domain in the first layer breaks down into two
regions in which different dependences of q1 vs. Ψ1 hold. These regions are separated
by a closed contour Γ (In) along which q1 is constant (dotted lines in figures 9b

and 10b). The contour Γ (In) bounds the central region and encloses an asymmetric
dipole made up of the patch of strong vorticity and a weaker vortex of the opposite
sign. The outer ring bounded by the contours Γ and Γ (In) contains two asymmetric
‘banana-like’ vortices and their peripheries (figures 9b, 10b). The longer branch on
left side of the scatter-graph corresponds to the central region, and the shorter to the
outer ring. Some asymmetry of the contour Γ (In) means that, in the second layer, the
corresponding internal contour does not coincide with Γ (In), but is symmetric to Γ (In)

about the x-axis.
A ramification of the interior scatter-graph is a general property of shielded non-

circular (nonlinear) modons – those consisting of vortical pairs enclosed in vorticity
rims. The absence of ramification is an inherent feature of circular shielded modons
in which the two interior scatter-graphs coincide due to their linearity.

4.3. Accuracy

The accuracy of the computational algorithm described in § 3 is a function of its
parameters N, P, K and the tolerance (or the number of iterations) specified for
the successive linearization procedure, as well as of the form of the contour Γ and
the intrinsic parameters U and C of the problem (9), (10), (24), (25). We tested the
method for different combinations of parameters, in most cases Γ being an ellipse.
The general conclusion is that the stronger the deviation from a circle, the lower
the accuracy if all the other parameters are fixed. At a given Γ , the accuracy
generally decreases with increasing C. Within the interval 0.1 � U � 1.5 the accuracy
is practically independent of U ; outside this interval it decreases with decreasing
or increasing U . On the other hand, at fixed Γ, U and C, the computational errors
have a tendency to decrease when N, P and K are increased. We also note that a
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(c) scatter-graph. Notation as in figures 1 and 3.
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N mean Res eq. (32) max Res eq. (32) mean Res eq. (33) max Res eq. (33)

7 0.029020 0.090037 0.027892 0.078470
9 0.004238 0.015539 0.004451 0.013487

11 0.000696 0.002576 0.001601 0.006920
13 0.000907 0.004186 0.001207 0.005017
15 0.000077 0.000404 0.000252 0.002609

Table 1. The root-mean-square and maximal residuals in equations (32) and (33) at the
output of the iterative procedure.

N mean ΨΓ max ΨΓ mean

[
∂Ψ

∂n

]
Γ

max

[
∂Ψ

∂n

]
Γ

mean qΓ max qΓ

7 0.017887 0.023873 0.051210 0.084416 0.223252 0.296012
9 0.001203 0.002014 0.006400 0.012597 0.016973 0.029934

11 0.000948 0.001356 0.005226 0.009454 0.013362 0.018972
13 0.000292 0.000466 0.001657 0.003367 0.004322 0.007216
15 0.000066 0.000110 0.000406 0.000758 0.000977 0.001655

Table 2. The root-mean-square and maximal values of the interior barotropic variables
at the separatrix.

certain correspondence between N, P and K (or h) must be established to avoid
possible oscillations of the polynomials between the grid points on the one hand,
and to minimize the necessary computations, on the other. The general rule is that
higher-degree polynomials require smaller mesh size. Our tests show that if the ratio
ry/rx or rx/ry does not exceed the limit of 1.2, quite a high accuracy can be achieved
at N = 11, P = 300, h = r0/30 (i.e. K ≈ 700).

In tables 1–3, the dependence of the accuracy estimates upon the parameter
N is shown for an extraordinary elliptical modon given by the parameters:
r0 = 1.3, rx/ry = 1.1, U = 1, C =0.1, the maximal number of iterations allowed being
fixed. The resulting maximal barotropic and baroclinic streamfunction and PV values
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N mean[Ψ ]Γ max[Ψ ]Γ mean

[
∂Ψ

∂n

]
Γ

max

[
∂Ψ

∂n

]
Γ

mean q̃Γ max q̃Γ

7 0.002699 0.005989 0.007380 0.015512 0.030157 0.066729
9 0.000151 0.000276 0.000503 0.000803 0.002533 0.004667

11 0.000014 0.000020 0.000175 0.000405 0.000212 0.000421
13 0.000019 0.000044 0.000145 0.000384 0.000345 0.000770
15 0.000009 0.000013 0.000045 0.000076 0.000127 0.000195

Table 3. The root-mean-square and maximal values of the interior baroclinic variables
at the separatrix.

(needed to judge the relative errors) are: max ΨBT ≈ 2, max ΨBC ≈ 0.6, max qBT ≈ 10,
max qBC ≈ 6. At the stage of constructing the first-approximation solution, unequal
mesh sizes were specified for the x- and y-axes: hx = rx/30, hy = ry/30; the number
of boundary points being taken to be P =300. For checking the accuracy at which
equations (32) and (33) were satisfied, a fine 200 × 200 mesh was used (i.e. hx = rx/200,

hy = ry/200, about 31 400 points), and the fulfillment of the boundary conditions and
the constancy of the interior baroclinic PV along the separatrix were checked at 1000
points; only the first quadrant was considered. In the headings of tables 1–3 the
following notations are used: mean Res – root-mean-square residual, i.e. the mean
(over about 31 400 fine-mesh points) of the right-hand side of equation (32) or (33) at
the output of the iterative procedure (30), (31); max Res – the corresponding maximal
absolute residual; mean ΨΓ and max ΨΓ – the root-mean-square (over 1000 boundary
points) and the maximal value, respectively, of ΨBT at the separatrix; mean qΓ and
max qΓ – the same for qBT; mean[Ψ ]Γ and max[Ψ ]Γ – the same for the jump of the
baroclinic streamfunction (i.e. |ΨBC − Ψ

(Ex)
BC |Γ ); mean[∂Ψ/∂n]Γ and max[∂Ψ/∂n]Γ –

the same for the jump of the normal-to-Γ derivative of the barotropic (table 2) and
baroclinic (table 3) PV; mean q̃Γ and max q̃Γ – the same for the deviation of the
interior baroclinic PV, qBC, from its arithmetic mean.

The data presented in tables 1–3 prove that the errors decrease considerably when
parameter N increases from 7 to 11, and less rapidly when N is increased from 11
to 15 (the latter is probably due to the limited precision provided by the software
used). The accuracy achieved at N = 11 is indeed sufficient, as confirmed by the
extreme thinness of the scatter-graphs in figures 3, 7, 8c, 11. We note that for
a circular modon (U = 0.5, r0 = 1.3, C = 0.1) the procedure converged very rapidly,
giving at N = 11 errors within the interval 10−14 to 2 × 10−12, the maximal values
of the streamfunctions and PV being max ΨBT ≈ 2, max ΨBC ≈ 0.5, max qBT ≈ 15,
max qBC ≈ 4.

5. Smoothness and stability
Our earlier numerical experiments (KBK) show that smooth circular baroclinic

modons are quite durable, propagating steadily until t = 200 to 250 if the amplitude
ratio ABC/ABT = max|ΨBC|/max|ΨBT| is in the range approximately from 1 to 1.5 (here
t is non-dimensional time, the scale being T = 1/βLRo). With a stronger baroclinic
rider, the modon sheds a westward-travelling heton-like vortical pair and transforms
into a smaller, nearly circular modon, whose radius and translation speed fit the
dispersion relation r0 = rC(U ) for smooth circular modons (for details see KBK).
Weak (but non-zero) riders induce gradual disintegration of the vortex structure,
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which can be interpreted as indication of instability of barotropic Larichev–Reznik
modons to baroclinic perturbations.

To clarify the stability properties of the smooth and non-smooth modons (i.e. those
marked by continuity or discontinuity of the baroclinic PV), we conducted a number
of experiments using the same simulation model. It is based on the non-dimensional
equations of PV conservation for a two-layer ideal fluid (i.e. in a strictly inviscid
limit) that are integrated in a rectangular domain [−X < x < X; −Y < y < Y ] with
periodic conditions at x = ± X and conventional conditions

∂ψ (j )

∂x
= 0 and

∫ X

−X

∂2ψ (j )

∂t∂y
dx = 0 at y = ± Y

(e.g. Kamenkovich et al. 1986, Ch. 2). The domain half-sizes X and Y were taken
equal to 15LRo, i.e. approximately 10 to 15 times larger than the modon radius, the
space resolution being 15 and 30 nodes per mean modon radius for smooth and
non-smooth modons, respectively; the time step was controlled by the gradients of Ψ

and q and did not exceed 2.5 × 10−3T .
In the experiments with non-smooth modons, the model was initialized using

circular modons with separatrix radius both smaller and larger than the radius
rC(U ) of a smooth circular modon propagating at the speed U , the amplitude ratio
ABC/ABT being equal to unity. Apart from their sizes, the circular modons with
r0 < rC(U ) and r0 > rC(U ) at ABC/ABT = 1 differ in the character of the cross-
sections of the layer relative vorticity in the y-direction (at x = 0): in the smaller
modons the relative vorticity is monotonic when followed from the pole (point of
extremum) outwards via the point of jump, while in the larger modons it is not. In
two such modons, whose evolution is shown in figure 12, the initial parameters are:
ABC/ABT =1, U = 0.5, r0 = 0.5r0.5 (figure 12a) and ABC/ABT =1, U =0.5, r0 = 1.5r0.5

(figure 12b), where r0.5 = rC(0.5) ≈ 1.30 is the radius of a smooth circular modon
that propagates at translation speed 0.5. These solutions differ also in that, in the
smaller modon, the internal and external values of q1 along the separatrix are of the
same sign, whereas in the larger modon they are opposite in sign (cf. upper panels in
figure 12a, b).

In contrast to the robustness of the smooth circular modon given by the above
values of ABC/ABT and U , the evolution of the non-smooth vortices attests to their
instability. The upper and lower vortices constituting the smaller modon (r0 = 0.5r0.5)
start separating almost immediately. Their drift is similar to some extent to that
of two non-interacting barotropic monopoles (the effect of the weak accompanying
vortices is negligible). While radiating Rossby waves and emitting vorticity filaments,
one of them (depending on the sense of rotation) translates mainly westwards with
a relatively small southward component of propagation; the other vortex translates
symmetrically about the x-axis (figure 12a). There is also some degree of similarity in
this evolution to that of a dipole with a weak smooth baroclinic rider (cf. KBK).

The evolution of small non-smooth circular modons that are sufficiently close in
size to the smooth ones differs from the scenario described above. For example, a
modon, whose nominal translation speed and radius are 0.5 and 0.9r0.5, respectively,
by t ≈ 15 reorganizes into a slightly oval (and weakly nonlinear) essentially smooth
structure of nearly the same radius and, subsequently propagates steadily at a speed
U ≈ 0.55.

The larger vortex (r0 = 1.5r0.5) evolves in a manner similar to that of a smooth
modon with a strong rider: the peripheral westward parts of the vortices in the upper
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Figure 12. Evolution of the PV fields of two initially non-smooth circular modons given by
the parameters: U = 0.5, ABC/ABT = 1; and (a) r0 = 0.5r0.5 ≈ 0.65, (b) r0 = 1.5r0.5 ≈ 1.95. Upper
panel, initial state (t = 0); lower panel, the fields at t = 5. Notation as in figure 1.
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and the lower layers elongate and overlap, which leads to shedding of a considerable
amount of PV (figure 12b). After the separation, the remaining eastward vortex
structure reorganizes into a circular modon composed of a dipolar barotropic mode
and a smooth baroclinic rider. This process was detailed in our previous publication
(KBK). Smaller circular modons, whose radii still exceed that of a smooth circular
modon, evolve in much the same way.

The unstable dynamics of the two types of non-smooth modons (with r0 <rC(U )
and r0 > rC(U )) should not be associated with the problem of resolving a PV jump in
a finite-difference model. Indeed, numerical experiments with the Stern modon using a
barotropic version of this numerical model (Kizner & Berson 2000) prove that even
at mesh size twice as large, when about 15 mesh points fall within the modon radius,
the resolution is still good and the jump front can be observed in the PV field for
quite a long time, at least till t =30 (which is much longer than the characteristic time
of the above unstable changes). Experiments with non-smooth baroclinic modons
conducted at this halved resolution support the conclusion that their instability has
a physical rather than a numerical origin: the simulated dynamics were exactly the
same as at a high resolution.

The instability of the non-smooth barotropic modon-plus-rider solution was first
demonstrated numerically by Swenson (1987). Although so far no strict analytical
proof of this instability has been provided, it is conventionally attributed to the
specificity of the radial velocity profile rather than to the PV jump (Swenson 1987;
Nycander 2001). For Euler equations in two dimensions, Filippov & Yan’kov (1986)
showed that stability of monopoles is guaranteed by the monotonic decrease of the
radial profile of vorticity. It is possible that the shape of the layer relative vorticity
profile is important in determining the stability or otherwise of two-layer modons on
the β-plane as well. However, we have not found such qualitative distinctions between
the vorticity profiles of circular smooth and smaller non-smooth modons (besides the
vorticity continuity/discontinuity) that might clearly point to the stability of the first
and instability of the latter. This suggests that the monotonic decrease of the relative
vorticity profile does not represent a sufficient condition for the stability of baroclinic
β-plane modons.

In smooth elliptical modons, due to the nonlinearity of the interior PV vs.
streamfunction relation, the amplitude of the baroclinic mode is not arbitrary. This,
however, does not imply that any smooth elliptical modon is necessarily stable. A few
sample evolutionary tests (up to t = 100) suggest that smooth extraordinary modons
are unstable. Regarding the ordinary modons, the closer the modon’s size is to that
of a smooth circular modon of the same translation speed, the more steady its
propagation.

Smooth ordinary elliptical modons categorized by the inequality r0 <rC(U ) are
generally rather robust if they are not too small. For example, the modon given by
the parameters U =1, r0 = 1, ry/rx =1.1 (figure 5) is relatively remote from the line
of smooth circular modons r0 = rC(U ) (point A in figure 4). Yet, in an evolutionary
simulation, it changes very little, a small change being visible only in the barotropic
PV at the initial stage of the evolution.

In a bigger smooth ordinary modon given by the parameters U =0.4, r0 = 1.14,
ry/rx = 1.07 (point F in figure 4), which is closer to the line r0 = rC(U ), no evolutionary
trends are evident at least up to t = 350 (figure 13a). In contrast, the smooth
extraordinary modon whose initial parameters are U = 0.4, r0 = 1.45, rx/ry = 1.07
(point G in figure 4) evolves considerably within a few tens of T (figure 13b).
The growing changes in the modon structure and translation speed result in its
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disintegration by t = 90, the translation speed being estimated from the change of the
x-coordinate of the barotropic PV poles in time.

The smooth ordinary elliptical modon given by the parameters U = 0.5, r0 = 1.35,
ry/rx = 1.02 (figure 8) and belonging to the region r0 > rC(U ) (point C in figure 4)
displays less stable behaviour. By t = 15 it has converted into a steadily translating (at
U ≈ 2.5) non-circular modon of approximately the same mean radius. We believe that
this evolution is related primarily to the strength of the baroclinic mode in the solution
(ABC/ABT ≈ 3.8). In such a vortical pair, the shift between the poles of the upper and
lower vortices is insufficient to permit an efficient hetonic interaction between the
vortices. Thus the modon increases its ellipticity, strengthens the barotropic mode
and speeds up. Efforts to construct a smooth ordinary elliptical solution at U = 2.5
have not been successful for reasons of divergence of the successive linearization
procedure.

In evolutionary experiments, shielded elliptical modons displayed strongly unstable
behaviour, which might be anticipated based on the strong instability of the circular
shielded barotropic modons (Kizner & Berson 2000).

6. Conclusion
Circular modons represent only a sub-class of possible modon solutions. Despite

the fact that the equivalence of the linearity of the PV vs. Ψ dependence within the
trapped-fluid domain and the circularity of the latter was not understood immediately,
the possibility, in many cases, of constructing analytical solutions has stimulated the
interest of researchers in the circular modons (Stern 1975; Larichev & Reznik 1976;
Flierl et al. 1980; Berestov 1979; Kizner 1984, 1997; Reznik & Sutyrin 2001). However,
one could hardly expect that real robust vortical structures in stratified geophysical
fluids would necessarily exhibit circularity and linearity (in the above sense).

Numerical simulations (KBK) indicate that although circular modons with
moderately strong baroclinic riders are quite robust, some types of perturbations
may induce transitions of these modons to even more stable oval states (in an equal-
depth two-layer model); transitions of this kind were also observed in a three-layer
model. We believe that such non-circular heton-like vortical structures may represent
a fairly general type of baroclinic equilibrium in geophysical fluids.

In order to facilitate the analysis of non-circular modons, a mathematical problem
was considered for the solutions categorized by the symmetry of their interior areas
about the x- and y-axes. A numerical method for constructing such modons was
suggested based on the successive linearization of the governing equations and
polynomial approximation of the corrections. We cannot deduce the correctness
of the above nonlinear problem exactly (in analytical terms), but it is supported by
the fact that, whenever the numerical procedure converges, the resulting solution
is unique. In particular, specifying a non-circular separatrix always results in the
nonlinearity of the interior PV vs. Ψ dependence in the layers, whereas circular
modons are always linear.

As well as the non-smooth solutions, in which a finite jump of the baroclinic PV
along the separatrix is permissible, smooth modons were also shown to exist. Smooth
solutions (those with no jump in the baroclinic PV at the separatrix) are available
when a dispersion relationship between the modon size, shape, translation speed
and the exterior baroclinic amplitude is fulfilled. Numerical simulations conducted
indicate that non-smooth solutions are presumably unstable, whereas among smooth
modons some display substantial durability.
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In our efforts to obtain modons similar in their properties to those that emerged in
the simulations of KBK, we focused upon elliptical figures and found that the branches
of the dispersion relation for the smooth circular modons, r0 = rC(U ), break the (r0, U )-
plane down into regions where different types of elliptical modons exist. Beneath the
lower branch of this relation, at r0 <rC(U ), only non-shielded elliptical solutions were
found characterized by the inequality ry > rx (ordinary modons). In contrast, non-
shielded solutions, in which ry < rx (extraordinary modons), were found only above
this line. On and above it – at r0 � rC(U ) – ordinary modons are also present, but
they differ in structure from the ordinary modons occurring beneath this line.

In regard to the baroclinic mode, the ordinary elliptical solutions at r0 <rC(U ) are
similar to the quasi-stable oval modons obtained in the evolutionary simulations of
KBK: the baroclinic PV field in the ordinary modons normally has a saddle-like
shape. The ordinary modons of the first type (r0 < rC(U )) typically demonstrate a
considerable durability if they are not too distant from the line r0 = rC(U ). They
can hardly be regarded as direct analogues of the oval modons described by KBK,
however, since the latter fall within the region r0 > rC(U ). On the other hand, our
experiment with the ordinary elliptical modon of the second type (r0 > rC(U )) proves
its instability.

These observations, along with the fact that even small perturbations of the
separatrix form may lead to considerable changes in the structure of the resulting
modon solution, lead us to believe that the oval modons obtained in the evolutionary
experiments are not exactly elliptical. Moreover, one should not rule out the possibility
that they have two different (though symmetrical and almost indistinguishable)
separatrices in the upper and lower layers. We believe that extended numerical research
should be carried out to evaluate the dispersion relation r0 = r0(U, C, ry/rx) for the
smooth elliptical modons as a three-dimensional surface in the four-dimensional space
of the parameters U , C, ry/rx, r0. Implementation of such a program would require
a considerable effort, but determining the topology and geometry of the dispersion
surface may turn out to be crucial in understanding the causes of the stability of some
modons and instability of others. Another issue that is likely to be clarified in the
framework of such research is why, in the super long-term evolutionary simulations
(KBK), the substantially robust circular modons eventually leap to more or less
remote oval states instead of passing close to neutrally stable oval states, that is,
‘creeping’ along the dispersion surface.

One more possible application of our numerical procedure in its present form is
a detailed study of non-circular barotropic modons. Whereas in smooth baroclinic
modons the bulk computations are related to finding the proper value of the constant
C, in barotropic modons C = 0, and only one equation, J (ΨBT, qBT) = 0, supplemented
with one pair of boundary conditions (the first ones in (24) and (25)) must be solved.
This makes possible a comparative study of the properties of barotropic modons of
different types, including propagating and standing (and thus non-smooth) modons
on both the β- and f -planes. A comparison of the behaviour of barotropic and
baroclinic modons in evolutionary simulations is also of great interest because such
a study might reveal the role of baroclinicity in the transition of linear (circular)
modons to nonlinear oval states.

The methodological ideas underlying the approach presented in § 3 open up the
prospect of conducting a study of non-symmetrical modons. Asymmetry, in general
(whether or not the layers are of the same depths), means the lack of antisymmetry
and symmetry in the barotropic and baroclinic modes, respectively, and allows the
existence of two different separatrices, Γ1 and Γ2, in the upper and lower layers.
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Accordingly, it yields the presence of two free constants, Ψ1|Γ1
= C1 and Ψ2|Γ2

= C2, in
a modon solution, once the translation speed is fixed.
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